

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# (2*E*)-1-(2,4-Dichlorophenyl)-3-(3,4,5trimethoxyphenyl)prop-2-en-1-one

### Hoong-Kun Fun,<sup>a</sup>\*‡ Tze Shyang Chia,<sup>a</sup> M. Sapnakumari,<sup>b</sup> B. Narayana<sup>b</sup> and B. K. Sarojini<sup>c</sup>

<sup>a</sup>X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, <sup>b</sup>Department of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and <sup>c</sup>Department of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India Correspondence e-mail: hkfun@usm.mv

Received 15 April 2012; accepted 15 April 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.001 Å; R factor = 0.030; wR factor = 0.086; data-to-parameter ratio = 27.9.

In the title compound,  $C_{18}H_{16}Cl_2O_4$ , the dihedral angle between the benzene rings is 82.40 (4)°. The methoxy groups at both *meta* positions of the 3,4,5-trimethoxyphenyl ring are slightly twisted from the aromatic ring [C-O-C-C =-166.60 (8) and -6.18 (13)°], whereas the methoxy group at the *para* position is almost perpendicular [C-O-C-C =112.08 (9)°]. The ketone O atom is connected to the 2,4dichlorophenyl group through a  $C_{ar}-C_{ar}-C-O$  (ar = aromatic) torsion angle of -116.43 (9)°. In the crystal, molecules are linked by  $C-H\cdots O$  hydrogen bonds into infinite chains along the *b* axis. The crystal structure also features  $C-H\cdots\pi$  interactions.

#### **Related literature**

For a related structure, see: Fun *et al.* (2012). For background to various chalcone derivatives, see: Samshuddin *et al.* (2011). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).



#### ‡ Thomson Reuters ResearcherID: A-3561-2009.

## Experimental

#### Crystal data

| $C_{18}H_{16}Cl_2O_4$ | V = 3369.3 (3) Å <sup>3</sup>             |
|-----------------------|-------------------------------------------|
| $M_r = 367.21$        | Z = 8                                     |
| Orthorhombic, Pbca    | Mo $K\alpha$ radiation                    |
| a = 9.4305 (5)  Å     | $\mu = 0.40 \text{ mm}^{-1}$              |
| b = 13.9334 (8) Å     | T = 100  K                                |
| c = 25.6417 (14)  Å   | $0.48 \times 0.39 \times 0.22 \text{ mm}$ |

#### Data collection

| Bruker APEX DUO CCD                    | 24763 measured reflections             |
|----------------------------------------|----------------------------------------|
| diffractometer                         | 6139 independent reflections           |
| Absorption correction: multi-scan      | 5445 reflections with $I > 2\sigma(I)$ |
| (SADABS; Bruker, 2009)                 | $R_{\rm int} = 0.020$                  |
| $T_{\min} = 0.829, \ T_{\max} = 0.917$ |                                        |

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.030$ | 220 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.086$               | H-atom parameters constrained                              |
| S = 1.03                        | $\Delta \rho_{\rm max} = 0.52 \text{ e } \text{\AA}^{-3}$  |
| 6139 reflections                | $\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$ |

#### Table 1

Hydrogen-bond geometry (Å, °).

| - A | Cg1 | is | the | centroid | of | the | C10- | C15 | ring |
|-----|-----|----|-----|----------|----|-----|------|-----|------|
|-----|-----|----|-----|----------|----|-----|------|-----|------|

|                                          |      | $D^{\dots}A$ | $D = \Pi \cdots A$ |
|------------------------------------------|------|--------------|--------------------|
| $\boxed{C9-H9A\cdotsO3^{i}} \qquad 0.93$ | 2.53 | 3.3442 (11)  | 147                |
| $C17-H17A\cdots Cg1^{ii}$ 0.96           | 2.60 | 3.2965 (11)  | 130                |

Symmetry codes: (i)  $-x + \frac{3}{2}$ ,  $y - \frac{1}{2}$ , z; (ii) -x,  $y + \frac{3}{2}$ ,  $-z + \frac{3}{2}$ .

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

HKF and TSC thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSC also thanks the Malaysian Government and USM for the award of a research fellowship. BN thanks the UGC, New Delhi, Government of India, for the purchase of chemicals through the SAP–DRS–Phase 1 programme.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6742).

#### References

- Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Fun, H.-K., Chia, T. S., Sapnakumari, M., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, 0629.
- Samshuddin, S., Narayana, B., Shetty, D. N. & Raghavendra, R. (2011). Der Pharma Chem. 3, 232–240.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

# supplementary materials

Acta Cryst. (2012). E68, o1465 [doi:10.1107/S1600536812016339]

# (2E)-1-(2,4-Dichlorophenyl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one

## Hoong-Kun Fun, Tze Shyang Chia, M. Sapnakumari, B. Narayana and B. K. Sarojini

#### Comment

In continuation of our work on the synthesis of chalcones (Fun *et al.*, 2012, Samshuddin *et al.*, 2011) as potential precursors for biodynamic functionalized derivatives, the title compound was prepared and its crystal structure is now reported.

In the title compound (Fig. 1), the dihedral angle between the two benzene rings (C1–C6 & C10–C15) is 82.40 (4)°. The two methoxy groups at both *meta* positions (at atoms C12 & C14) are slightly twisted from the attached benzene ring with torsion angles C16—O1—C12—C13 = -166.60 (8)° and C18—O3—C14—C15 = -6.18 (13)°, whereas the methoxy group at *para* position (at atom C13) is almost perpendicular with C17—O2—C13—C14 = 112.08 (9)°. The atom O4 is connected to 2,4-dichlorophenyl group (C11/Cl2/C1–C6) through torsion angle [C5—C6—C7—O4] of -116.43 (9)°. Bond lengths and angles are comparable to a related structure (Fun *et al.*, 2012).

In the crystal (Fig. 2), molecules are linked by C9—H9A—O3 hydrogen bonds into infinite chains along the *b* axis. The crystal is further stabilized by C—H $\cdots\pi$  interactions (Table 1), involving *Cg*1 which is the centroid of C10—C15 ring.

## **Experimental**

To a mixture of 2,4-dichloroacetophenone (1.89 g, 0.01 mol) and 3,4,5-trimethoxybenzaldehyde (1.96 g, 0.01 mol) in ethanol (50 ml), 15 ml of 10% sodium hydroxide solution was added and stirred at 0-5 °C for 1 h. The precipitate formed was collected by filtration and purified by recrystallization from ethanol. Colourless blocks were grown from toluene as solvent by slow evaporation method (M.P.: 335–337 K).

## Refinement

All H atoms were positioned geometrically [C—H = 0.93 and 0.96 Å] and refined using a riding model with  $U_{iso}(H) = 1.2$  or  $1.5U_{eq}(C)$ . A rotating group model was applied to the methyl groups. An outlier (0 0 18) was omitted.

## **Computing details**

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT* (Bruker, 2009); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008) and *PLATON* (Spek, 2009).







## Figure 2

The crystal packing of the title compound. The dashed lines represent the hydrogen bonds.

## (2E)-1-(2,4-Dichlorophenyl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one

| Crystal data                  |                                                       |
|-------------------------------|-------------------------------------------------------|
| $C_{18}H_{16}Cl_2O_4$         | F(000) = 1520                                         |
| $M_r = 367.21$                | $D_{\rm x} = 1.448 {\rm Mg} {\rm m}^{-3}$             |
| Orthorhombic, Pbca            | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| Hall symbol: -P 2ac 2ab       | Cell parameters from 9912 reflections                 |
| a = 9.4305 (5)  Å             | $\theta = 2.7 - 32.7^{\circ}$                         |
| b = 13.9334 (8) Å             | $\mu=0.40~\mathrm{mm^{-1}}$                           |
| c = 25.6417 (14)  Å           | T = 100  K                                            |
| V = 3369.3 (3) Å <sup>3</sup> | Block, colourless                                     |
| Z = 8                         | $0.48 \times 0.39 \times 0.22 \text{ mm}$             |
|                               |                                                       |

Data collection

| Bruker APEX DUO CCD<br>diffractometer<br>Radiation source: fine-focus sealed tube<br>Graphite monochromator<br>$\varphi$ and $\omega$ scans<br>Absorption correction: multi-scan<br>( <i>SADABS</i> ; Bruker, 2009)<br>$T_{\min} = 0.829, T_{\max} = 0.917$<br><i>Pafinament</i> | 24763 measured reflections<br>6139 independent reflections<br>5445 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.020$<br>$\theta_{max} = 32.7^{\circ}, \ \theta_{min} = 2.7^{\circ}$<br>$h = -12 \rightarrow 14$<br>$k = -20 \rightarrow 21$<br>$l = -38 \rightarrow 35$ |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rejinement                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                              |
| Refinement on $F^2$<br>Least-squares matrix: full                                                                                                                                                                                                                                | Secondary atom site location: difference Fourier map                                                                                                                                                                                                                         |
| $R[F^2 > 2\sigma(F^2)] = 0.030$<br>$wP(F^2) = 0.086$                                                                                                                                                                                                                             | Hydrogen site location: inferred from                                                                                                                                                                                                                                        |
| S = 1.03                                                                                                                                                                                                                                                                         | H-atom parameters constrained                                                                                                                                                                                                                                                |
| 6139 reflections                                                                                                                                                                                                                                                                 | $w = 1/[\sigma^2(F_o^2) + (0.0458P)^2 + 1.108P]$                                                                                                                                                                                                                             |
| 220 parameters                                                                                                                                                                                                                                                                   | where $P = (F_o^2 + 2F_c^2)/3$                                                                                                                                                                                                                                               |
| 0 restraints                                                                                                                                                                                                                                                                     | $(\Delta/\sigma)_{\rm max} = 0.002$                                                                                                                                                                                                                                          |
| Primary atom site location: structure-invariant                                                                                                                                                                                                                                  | $\Delta \rho_{\rm max} = 0.52 \text{ e } \text{\AA}^{-3}$                                                                                                                                                                                                                    |
| direct methods                                                                                                                                                                                                                                                                   | $\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$                                                                                                                                                                                                                   |

#### Special details

**Experimental**. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | r            | 12            | 7            | II. */II                           |
|-----|--------------|---------------|--------------|------------------------------------|
|     | л            | y             | 2            | U <sub>1SO</sub> / U <sub>eq</sub> |
| Cl1 | 0.28135 (3)  | 0.217251 (16) | 0.611803 (9) | 0.02108 (6)                        |
| C12 | 0.68551 (3)  | 0.053651 (17) | 0.730224 (9) | 0.02548 (6)                        |
| 01  | 0.85362 (8)  | 0.59918 (5)   | 0.48151 (3)  | 0.02017 (13)                       |
| O2  | 0.81150 (7)  | 0.78269 (5)   | 0.51372 (3)  | 0.01807 (13)                       |
| O3  | 0.67985 (7)  | 0.82227 (5)   | 0.60144 (3)  | 0.01813 (13)                       |
| O4  | 0.22886 (7)  | 0.40914 (5)   | 0.67797 (3)  | 0.01916 (13)                       |
| C1  | 0.41001 (9)  | 0.22749 (6)   | 0.65990 (3)  | 0.01458 (14)                       |
| C2  | 0.48428 (10) | 0.14561 (6)   | 0.67434 (3)  | 0.01770 (15)                       |
| H2A | 0.4638       | 0.0865        | 0.6593       | 0.021*                             |
| C3  | 0.58992 (10) | 0.15424 (6)   | 0.71183 (3)  | 0.01775 (16)                       |
| C4  | 0.62109 (11) | 0.24156 (7)   | 0.73518 (4)  | 0.02006 (17)                       |
| H4A | 0.6907       | 0.2458        | 0.7608       | 0.024*                             |
| C5  | 0.54655 (10) | 0.32244 (6)   | 0.71967 (3)  | 0.01803 (16)                       |
| H5A | 0.5680       | 0.3815        | 0.7346       | 0.022*                             |
| C6  | 0.43967 (9)  | 0.31692 (6)   | 0.68200 (3)  | 0.01377 (14)                       |

| C7   | 0.35648 (9)  | 0.40595 (6) | 0.66920 (3) | 0.01436 (14) |
|------|--------------|-------------|-------------|--------------|
| C8   | 0.43334 (9)  | 0.48838 (6) | 0.64771 (3) | 0.01531 (14) |
| H8A  | 0.3917       | 0.5488      | 0.6498      | 0.018*       |
| C9   | 0.56145 (9)  | 0.48055 (6) | 0.62511 (3) | 0.01455 (14) |
| H9A  | 0.6055       | 0.4208      | 0.6259      | 0.017*       |
| C10  | 0.63649 (9)  | 0.55929 (6) | 0.59932 (3) | 0.01371 (14) |
| C11  | 0.72028 (9)  | 0.53747 (6) | 0.55583 (3) | 0.01506 (14) |
| H11A | 0.7355       | 0.4739      | 0.5462      | 0.018*       |
| C12  | 0.78076 (9)  | 0.61202 (6) | 0.52700 (3) | 0.01442 (14) |
| C13  | 0.76521 (9)  | 0.70727 (6) | 0.54348 (3) | 0.01393 (14) |
| C14  | 0.68727 (9)  | 0.72740 (6) | 0.58881 (3) | 0.01376 (14) |
| C15  | 0.62042 (9)  | 0.65414 (6) | 0.61624 (3) | 0.01450 (14) |
| H15A | 0.5657       | 0.6680      | 0.6455      | 0.017*       |
| C16  | 0.84445 (12) | 0.50620 (8) | 0.45782 (4) | 0.02523 (19) |
| H16A | 0.8912       | 0.5074      | 0.4246      | 0.038*       |
| H16B | 0.7466       | 0.4893      | 0.4531      | 0.038*       |
| H16C | 0.8894       | 0.4597      | 0.4799      | 0.038*       |
| C17  | 0.96130 (10) | 0.79619 (7) | 0.51322 (4) | 0.02343 (18) |
| H17A | 0.9849       | 0.8475      | 0.4898      | 0.035*       |
| H17B | 1.0066       | 0.7382      | 0.5018      | 0.035*       |
| H17C | 0.9933       | 0.8119      | 0.5477      | 0.035*       |
| C18  | 0.58610 (11) | 0.84829 (7) | 0.64272 (4) | 0.0248 (2)   |
| H18A | 0.5853       | 0.9168      | 0.6465      | 0.037*       |
| H18B | 0.6178       | 0.8194      | 0.6746      | 0.037*       |
| H18C | 0.4921       | 0.8262      | 0.6348      | 0.037*       |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$     | $U^{22}$     | U <sup>33</sup> | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|--------------|--------------|-----------------|--------------|--------------|--------------|
| Cl1 | 0.02216 (11) | 0.01837 (10) | 0.02271 (10)    | -0.00144 (8) | -0.00764 (8) | -0.00429 (7) |
| Cl2 | 0.03293 (13) | 0.02033 (11) | 0.02319 (11)    | 0.00754 (9)  | -0.00281 (9) | 0.00501 (8)  |
| 01  | 0.0237 (3)   | 0.0184 (3)   | 0.0184 (3)      | -0.0001 (3)  | 0.0076 (2)   | -0.0007(2)   |
| O2  | 0.0143 (3)   | 0.0170 (3)   | 0.0229 (3)      | -0.0021 (2)  | 0.0016 (2)   | 0.0081 (2)   |
| O3  | 0.0185 (3)   | 0.0108 (3)   | 0.0251 (3)      | -0.0023 (2)  | 0.0047 (2)   | -0.0020 (2)  |
| O4  | 0.0144 (3)   | 0.0186 (3)   | 0.0245 (3)      | -0.0026 (2)  | 0.0027 (2)   | -0.0016 (2)  |
| C1  | 0.0158 (3)   | 0.0142 (3)   | 0.0137 (3)      | -0.0028 (3)  | -0.0004 (3)  | -0.0005 (3)  |
| C2  | 0.0225 (4)   | 0.0133 (3)   | 0.0173 (3)      | -0.0006 (3)  | 0.0001 (3)   | -0.0006 (3)  |
| C3  | 0.0217 (4)   | 0.0151 (3)   | 0.0164 (3)      | 0.0015 (3)   | 0.0003 (3)   | 0.0035 (3)   |
| C4  | 0.0227 (4)   | 0.0185 (4)   | 0.0190 (4)      | -0.0014 (3)  | -0.0058 (3)  | 0.0018 (3)   |
| C5  | 0.0210 (4)   | 0.0147 (3)   | 0.0184 (4)      | -0.0036 (3)  | -0.0036 (3)  | 0.0000 (3)   |
| C6  | 0.0148 (3)   | 0.0122 (3)   | 0.0143 (3)      | -0.0027 (3)  | 0.0010 (3)   | 0.0011 (2)   |
| C7  | 0.0153 (3)   | 0.0132 (3)   | 0.0146 (3)      | -0.0027 (3)  | 0.0003 (3)   | -0.0011 (3)  |
| C8  | 0.0148 (3)   | 0.0118 (3)   | 0.0193 (4)      | -0.0006 (3)  | 0.0017 (3)   | 0.0018 (3)   |
| C9  | 0.0148 (3)   | 0.0122 (3)   | 0.0167 (3)      | -0.0004 (3)  | 0.0006 (3)   | 0.0019 (3)   |
| C10 | 0.0127 (3)   | 0.0117 (3)   | 0.0168 (3)      | 0.0002 (3)   | 0.0008 (3)   | 0.0024 (3)   |
| C11 | 0.0144 (3)   | 0.0128 (3)   | 0.0180 (3)      | 0.0016 (3)   | 0.0017 (3)   | 0.0017 (3)   |
| C12 | 0.0130 (3)   | 0.0151 (3)   | 0.0152 (3)      | 0.0013 (3)   | 0.0017 (3)   | 0.0017 (3)   |
| C13 | 0.0117 (3)   | 0.0133 (3)   | 0.0168 (3)      | -0.0003 (3)  | 0.0006 (3)   | 0.0035 (3)   |
| C14 | 0.0120 (3)   | 0.0111 (3)   | 0.0182 (3)      | -0.0006 (3)  | -0.0002 (3)  | 0.0003 (3)   |
| C15 | 0.0138 (3)   | 0.0127 (3)   | 0.0170 (3)      | -0.0009 (3)  | 0.0023 (3)   | 0.0006 (3)   |

# supplementary materials

| C16 | 0.0312 (5) | 0.0230 (4) | 0.0216 (4) | -0.0004 (4) | 0.0065 (4) | -0.0058 (3) |
|-----|------------|------------|------------|-------------|------------|-------------|
| C17 | 0.0156 (4) | 0.0213 (4) | 0.0334 (5) | -0.0034 (3) | 0.0058 (3) | 0.0033 (4)  |
| C18 | 0.0246 (5) | 0.0164 (4) | 0.0334 (5) | -0.0007 (3) | 0.0092 (4) | -0.0067 (3) |

Geometric parameters (Å, °)

| C11—C1     | 1.7360 (9)  | C8—H8A        | 0.9300      |
|------------|-------------|---------------|-------------|
| Cl2—C3     | 1.7319 (9)  | C9—C10        | 1.4635 (11) |
| O1—C12     | 1.3655 (10) | С9—Н9А        | 0.9300      |
| O1—C16     | 1.4334 (12) | C10—C15       | 1.3992 (11) |
| O2—C13     | 1.3702 (10) | C10—C11       | 1.4000 (12) |
| O2—C17     | 1.4252 (11) | C11—C12       | 1.3967 (12) |
| O3—C14     | 1.3628 (10) | C11—H11A      | 0.9300      |
| O3—C18     | 1.4260 (12) | C12—C13       | 1.4005 (12) |
| O4—C7      | 1.2252 (11) | C13—C14       | 1.4034 (12) |
| C1—C2      | 1.3890 (12) | C14—C15       | 1.3909 (11) |
| C1—C6      | 1.3971 (11) | C15—H15A      | 0.9300      |
| C2—C3      | 1.3896 (13) | C16—H16A      | 0.9600      |
| C2—H2A     | 0.9300      | C16—H16B      | 0.9600      |
| C3—C4      | 1.3874 (13) | C16—H16C      | 0.9600      |
| C4—C5      | 1.3864 (13) | C17—H17A      | 0.9600      |
| C4—H4A     | 0.9300      | C17—H17B      | 0.9600      |
| C5—C6      | 1.3983 (12) | C17—H17C      | 0.9600      |
| C5—H5A     | 0.9300      | C18—H18A      | 0.9600      |
| C6—C7      | 1.5040 (12) | C18—H18B      | 0.9600      |
| C7—C8      | 1.4658 (12) | C18—H18C      | 0.9600      |
| C8—C9      | 1.3444 (12) |               |             |
|            |             |               |             |
| C12—O1—C16 | 116.75 (7)  | C12—C11—C10   | 119.38 (8)  |
| C13—O2—C17 | 114.96 (7)  | C12—C11—H11A  | 120.3       |
| C14—O3—C18 | 117.06 (7)  | C10—C11—H11A  | 120.3       |
| C2—C1—C6   | 121.57 (8)  | O1—C12—C11    | 124.07 (8)  |
| C2C1Cl1    | 118.31 (6)  | O1—C12—C13    | 115.76 (7)  |
| C6—C1—Cl1  | 120.09 (6)  | C11—C12—C13   | 120.15 (8)  |
| C1—C2—C3   | 118.35 (8)  | O2-C13-C12    | 121.69 (8)  |
| C1—C2—H2A  | 120.8       | O2—C13—C14    | 118.34 (7)  |
| C3—C2—H2A  | 120.8       | C12—C13—C14   | 119.62 (7)  |
| C4—C3—C2   | 121.75 (8)  | O3—C14—C15    | 124.64 (8)  |
| C4—C3—C12  | 118.81 (7)  | O3—C14—C13    | 114.69 (7)  |
| C2—C3—C12  | 119.44 (7)  | C15—C14—C13   | 120.63 (8)  |
| C5—C4—C3   | 118.79 (8)  | C14—C15—C10   | 119.16 (8)  |
| C5—C4—H4A  | 120.6       | C14—C15—H15A  | 120.4       |
| C3—C4—H4A  | 120.6       | C10—C15—H15A  | 120.4       |
| C4—C5—C6   | 121.26 (8)  | O1-C16-H16A   | 109.5       |
| C4—C5—H5A  | 119.4       | O1-C16-H16B   | 109.5       |
| C6—C5—H5A  | 119.4       | H16A—C16—H16B | 109.5       |
| C1—C6—C5   | 118.26 (8)  | O1—C16—H16C   | 109.5       |
| C1—C6—C7   | 122.87 (7)  | H16A—C16—H16C | 109.5       |
| C5—C6—C7   | 118.78 (7)  | H16B—C16—H16C | 109.5       |
| O4—C7—C8   | 121.76 (8)  | O2—C17—H17A   | 109.5       |

| O4—C7—C6      | 120.16 (8)  | O2—C17—H17B     | 109.5       |
|---------------|-------------|-----------------|-------------|
| C8—C7—C6      | 118.06 (7)  | H17A—C17—H17B   | 109.5       |
| C9—C8—C7      | 122.88 (8)  | O2—C17—H17C     | 109.5       |
| С9—С8—Н8А     | 118.6       | H17A—C17—H17C   | 109.5       |
| С7—С8—Н8А     | 118.6       | H17B—C17—H17C   | 109.5       |
| C8—C9—C10     | 124.64 (8)  | O3—C18—H18A     | 109.5       |
| С8—С9—Н9А     | 117.7       | O3—C18—H18B     | 109.5       |
| С10—С9—Н9А    | 117.7       | H18A—C18—H18B   | 109.5       |
| C15—C10—C11   | 120.88 (7)  | O3—C18—H18C     | 109.5       |
| C15—C10—C9    | 121.04 (7)  | H18A—C18—H18C   | 109.5       |
| С11—С10—С9    | 118.03 (7)  | H18B—C18—H18C   | 109.5       |
|               |             |                 |             |
| C6—C1—C2—C3   | 0.19 (13)   | C15-C10-C11-C12 | -4.30 (13)  |
| Cl1—C1—C2—C3  | 178.29 (7)  | C9—C10—C11—C12  | 173.10 (8)  |
| C1—C2—C3—C4   | 0.71 (14)   | C16-01-C12-C11  | 11.64 (13)  |
| C1—C2—C3—Cl2  | -179.40 (7) | C16—O1—C12—C13  | -166.60 (8) |
| C2—C3—C4—C5   | -1.43 (14)  | C10-C11-C12-O1  | -174.04 (8) |
| Cl2—C3—C4—C5  | 178.69 (7)  | C10-C11-C12-C13 | 4.13 (13)   |
| C3—C4—C5—C6   | 1.26 (14)   | C17—O2—C13—C12  | -74.72 (11) |
| C2-C1-C6-C5   | -0.34 (13)  | C17—O2—C13—C14  | 112.08 (9)  |
| Cl1—C1—C6—C5  | -178.41 (7) | O1—C12—C13—O2   | 4.53 (12)   |
| C2C1C6C7      | -176.86 (8) | C11—C12—C13—O2  | -173.79 (8) |
| Cl1—C1—C6—C7  | 5.07 (11)   | O1—C12—C13—C14  | 177.64 (8)  |
| C4—C5—C6—C1   | -0.39 (13)  | C11—C12—C13—C14 | -0.67 (13)  |
| C4—C5—C6—C7   | 176.27 (8)  | C18—O3—C14—C15  | -6.18 (13)  |
| C1—C6—C7—O4   | 60.07 (12)  | C18-03-C14-C13  | 171.48 (8)  |
| С5—С6—С7—О4   | -116.43 (9) | O2—C13—C14—O3   | -7.14 (11)  |
| C1—C6—C7—C8   | -121.77 (9) | C12—C13—C14—O3  | 179.52 (8)  |
| C5—C6—C7—C8   | 61.73 (11)  | O2-C13-C14-C15  | 170.62 (8)  |
| O4—C7—C8—C9   | -162.01 (9) | C12-C13-C14-C15 | -2.72 (13)  |
| C6—C7—C8—C9   | 19.86 (12)  | O3—C14—C15—C10  | -179.90 (8) |
| C7—C8—C9—C10  | 174.62 (8)  | C13—C14—C15—C10 | 2.57 (13)   |
| C8—C9—C10—C15 | 31.54 (13)  | C11—C10—C15—C14 | 0.95 (13)   |
| C8-C9-C10-C11 | -145.86 (9) | C9-C10-C15-C14  | -176.36 (8) |

## Hydrogen-bond geometry (Å, °)

*Cg*1 is the centroid of the C10—C15 ring.

| D—H···A                                      | D—H  | H···A | D··· $A$    | <i>D</i> —H··· <i>A</i> |
|----------------------------------------------|------|-------|-------------|-------------------------|
| С9—Н9А…ОЗі                                   | 0.93 | 2.53  | 3.3442 (11) | 147                     |
| C17—H17 <i>A</i> … <i>Cg</i> 1 <sup>ii</sup> | 0.96 | 2.60  | 3.2965 (11) | 130                     |

Symmetry codes: (i) -*x*+3/2, *y*-1/2, *z*; (ii) -*x*, *y*+3/2, -*z*+3/2.